LECTURE 1

Introduction
Things we need to know

- CS 164
 - Qualitative idea of telecommunication networks and protocols – the OSI stack
 - what TCP/IP is, etc.
 - Routing protocols
Broad overview of course contents

- Wireless Systems
 - Wireless Wide Area Networks (WWANs)
 - Wireless Metro Area Networks (WMANs)
 - Wireless Local Area Networks (WLANs)
 - Wireless Personal Area Networks (WPANs)
 - Ad hoc and mesh networks
 Beware of Acronyms!

- Lower Layers
 - Physical Layer (PHY)
 - Radio Propagation
 - Modulation
 - Access layer (MAC)
 - Deployment

- Higher Layers
 - Routing
 - Transport
 - Mobility Management (MM)
Course Objectives

- Learn architectural differences between various wireless systems
- Examine how wireless affects protocol design and development
- Uncover network operation, deployment, and application issues
Textbook and references

- **Textbook**
 - *Mobile Communications 2nd edition*, Jochen Schiller, Addison Wesley
 - However, I may draw things from other sources.
 - Refer to slides – should have the content you are responsible for.

- **Other references**
 - Papers from journals and magazines
 - *Principles of Wireless Networks* – Kaveh Pahlavan and Prashant Krishnamurthy, Pearson
Contact

- Srikanth Krishnamurthy
- Location
 - 324, Engineering II
- E-mail: krish@cs.ucr.edu
- Web: www.cs.ucr.edu/~krish
- Office Hours: Fridays 11.00 – 12.00 (or by appointment)
- TA: Kittipat Apicharttrisorn kapic001@ucr.edu
Grading

- Homework 10%
- Labs 10%
- 3 Quizzes 15% each
 - We will choose the best two.
- Project 20%
- Final 30%

Undergraduates?
Labs and Project

- Lab attendance is mandatory for first 6 weeks.
 - You will lose points for each lab missed.
- First six labs: you will do ns3 simulations
 - Simple experiments
 - Learn the simulator.
- Last four labs – project
 - Will be assigned by Week 6
 - No groups – do this individually.
 - No cooperation whatsoever.
 - Take help from TAs as needed – attend labs as needed.
Homework

- Pick up in lab – turn in next lab.
- In the last four weeks, you will have the option of e-mailing a pdf to your TAs if you cannot attend.
- We will also post it on web.
Clarity and Legibility are Very Important

- There will be no credit for vague answers or unclear steps
- I should be able to understand what you were trying to do without your verbal explanation later
INTRODUCTION TO WIRELESS SYSTEMS

Quick Overview
Wireless Communication Systems

- **Wireless communication system**
 - Any electrical communication system that uses a naturally occurring communication channel, such as air, water, earth.

- **Examples:**
 - Cell phone, sonar, ground penetrating radar
 - Broadcast: (one way)
 - Radio, TV, pagers, satellite TV
 - Two Way:
 - Walkie talkie, cell phones, satellite phones, WiFi, Bluetooth

- Fundamentally different from wired networks
Mobile Vs. Wireless

- Mobile and Wireless are not interchangeable
- **Mobile** and **wireless** communication systems
 - Communicate over the air via radio-waves
 - Support some form of user mobility

<table>
<thead>
<tr>
<th>Mobile</th>
<th>Wireless</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗</td>
<td>✗</td>
<td>Stationary computer, pay phone</td>
</tr>
<tr>
<td>✗</td>
<td>✓</td>
<td>Wireless local loop</td>
</tr>
<tr>
<td>✓</td>
<td>✗</td>
<td>Calling card, call forwarding</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>Cell phone, laptop with WLAN</td>
</tr>
</tbody>
</table>
Classification of Wireless Systems

Based on Coverage
- Wireless Wide Area Networks
- Wireless Metro Area Networks
- Wireless Local Area Networks
- Wireless Personal Area Networks

Based on Topology
- Infrastructure
- Ad Hoc

Based on Mobility
- Fixed
- Stationary
- Portable
- Mobile
Classification of Wireless Systems

- Wireless Networks
 - Based on Topology
 - Infrastructure
 - Coverage
 - Wide Area
 - Ad Hoc
 - Coverage
 - Personal Area - Single Hop
 - Local Area - Multihop/Mesh

Typically use unlicensed spectrum
Classification based on data rates and technologies

- **Wide Area Network (WAN)**
 - Expensive licensed spectrum
 - Voice-oriented access

- **WLAN**
 - High speed unlicensed
 - Data-oriented access

- **WPAN**
 - Ad-hoc unlicensed
 - Random access

- **Gigabit Wireless**
 - OFDM/DSSS

- **Bluetooth/Zigbee**
 - FHSS/DSSS

- **Vehicle**
 - Outdoor
 - Walk
 - Fixed

- **Walk**
 - Outdoor
 - Fixed

- **Fixed**
 - Indoor
 - Walk
 - Fixed

User bit rate in Mbps

- 0.01
- 0.1
- 1
- 10
- 100
- 1000
Traditional Wired Networks
Positioning of Wireless Networks

Additional fixed components for wireless infrastructure

Traditional fixed telephone/data network infrastructure

Ad hoc clusters
Infrastructure Topology

- **Basics**
 - A wired (fixed) infrastructure supports communications between wireless devices and between wireless devices and fixed devices.

- **Base Stations (BSs) or Access Points (APs)** form the point of access to the network:
 - Each BS covers an area called a “cell”
 - Multiple BSs are interconnected to cover a larger geographical area.

- **Star topology**
 - The BS or AP is the hub
 - Any communication from a wireless device to another has to be sent through the BS or AP
 - The BS or AP manages user access to the network.
What is extra?

- **Wireless transceivers**
 - Base stations — BSs and Access points — APs
 - Mobile stations - MSs

- **Spectrum**
 - Frequency bands for uplink and downlink
 - Air interface

- **Management Entities**
 - Mobility management
 - Power management
 - Radio resource management
 - Security

- **Deployment**
 - Frequency reuse
 - Network design
Examples of Infrastructure Wireless Networks

- **Wide area**
 - Voice oriented - Cellular telephone systems
 - Data oriented - Mobile data systems

- **Local Area**
 - Voice oriented - Wireless PBXs
 - Cordless phones
 - Data Oriented - Wireless LANs
History of Wireless Voice Networks

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970s</td>
<td>Exploration of first generation mobile radio at Bell Labs</td>
</tr>
<tr>
<td>Late 1970s</td>
<td>First generation cordless phones</td>
</tr>
<tr>
<td>1982</td>
<td>Exploration of second generation digital cordless CT-2</td>
</tr>
<tr>
<td>1982</td>
<td>Deployment of first analog cellular system: NMT</td>
</tr>
<tr>
<td>1983</td>
<td>Deployment of first US analog cellular system: AMPS</td>
</tr>
<tr>
<td>1983</td>
<td>Exploration of 2G digital cellular GSM</td>
</tr>
<tr>
<td>1985</td>
<td>Exploration of wireless PBXs and DECT</td>
</tr>
<tr>
<td>1988</td>
<td>Initiation of GSM development</td>
</tr>
<tr>
<td>1988</td>
<td>Initiation of IS-54 development</td>
</tr>
<tr>
<td>1988</td>
<td>Exploration of Qualcomm’s CDMA technology</td>
</tr>
<tr>
<td>1991</td>
<td>Deployment of GSM</td>
</tr>
<tr>
<td>1993</td>
<td>Deployment of PHS/PHP and initiation of IS-95</td>
</tr>
<tr>
<td>1995</td>
<td>PCS Band auction</td>
</tr>
<tr>
<td>2002</td>
<td>3G Networks</td>
</tr>
<tr>
<td>2011 and beyond</td>
<td>Voice over LTE (VoLTE), Smartphones</td>
</tr>
</tbody>
</table>
The Cellphone Industry

- **Mobile phone systems**
 - Support communication to mobile users via wireless radio channel

- **Fastest growing technical device EVER!**
 - **Variety of systems**
 - 4.3 Billion Connections (Q2 2009)
 - Analog: NMT, AMPS, TACS
 - Digital: GSM, USDC, IS-95 (cellular CDMA), PDC

- **Scope of services and coverage areas growing**
 - Focus now on wireless data, apps, and location aware services

![Graph showing # of Connections (GSM = 3.4 Billion)](Q2 2009)

Source: GSMA
Example: 4G Data Rates in US Airports

Data Source: RootMetrics/CNN (2014)
US Statistics

34% of Households are “Wireless Only”

Annual Total Wireless Revenues in 2012: $178.4 Billion
Annual Revenues from Data Traffic in 2012: $68.3 Billion

Data Source: CTIA - http://www.ctia.org/advocacy/research/index.cfm/AID/10323
Generations of mobile communications

<table>
<thead>
<tr>
<th>Feature/ Decade</th>
<th>1980s</th>
<th>1990s</th>
<th>2000s</th>
<th>2010s</th>
<th>2020s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation</td>
<td>First</td>
<td>Second</td>
<td>Third</td>
<td>Fourth</td>
<td>Fifth</td>
</tr>
<tr>
<td>Keywords</td>
<td>Analog</td>
<td>Digital</td>
<td>Global World Standards;</td>
<td>MIMO, High data rate; IP-Based</td>
<td>Cognitive? Open spectrum? high mobility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Personal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple</td>
<td>FDMA</td>
<td>TDMA</td>
<td>CDMA, OFDM</td>
<td>OFDMA</td>
<td>Mixed?</td>
</tr>
<tr>
<td>Access</td>
<td></td>
<td>CDMA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellular</td>
<td>Analog Cellular</td>
<td>Digital</td>
<td>UMTS</td>
<td>LTE, WiMax</td>
<td>5G-Cellular, ITS</td>
</tr>
<tr>
<td>Systems</td>
<td></td>
<td>Cellular</td>
<td>Cellular</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cdma2000 (3G-Cellular) Rates</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>approaching 10Mbps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local/Home</td>
<td>Analog Cordless</td>
<td>Digital</td>
<td>Digital Cordless</td>
<td>Min. data rate > 100 Mbps</td>
<td>Minimum Data rate Gbps?</td>
</tr>
<tr>
<td>systems</td>
<td></td>
<td>Cordless</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Systems</td>
<td>Mobile Data</td>
<td>Mobile Data</td>
<td>3G Data, 802.11b, a, g, n</td>
<td>4G Data, 60 GHz WLANs? UWB?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Early WLAN</td>
<td>Early WLAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An evolutionary view of wireless technologies

<table>
<thead>
<tr>
<th>Year</th>
<th>1G Analog</th>
<th>2G Digital TDMA/CDMA</th>
<th>3G Cellular CDMA</th>
<th>4G LTE-Advanced OFDMA/MIMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980s</td>
<td>1G Analog FM/FDMA</td>
<td>Cellular Overlay CDPD</td>
<td>DSS/FHSS DECT - TDMA</td>
<td>4G LTE OFDMA/MIMO</td>
</tr>
<tr>
<td></td>
<td>Independent Mobile Data</td>
<td>2G Digital TDMA/CDMA</td>
<td>3G Cellular CDMA</td>
<td>4G LTE-Advanced OFDMA/MIMO</td>
</tr>
<tr>
<td>1990s</td>
<td>Analog Cordless Phone FM/FDMA</td>
<td>Digital Cordless TDMA</td>
<td>DSS/FHSS DECT - TDMA</td>
<td>4G WiMax OFDMA/MIMO</td>
</tr>
<tr>
<td></td>
<td>IEEE 802.11 DSSS/FHSS</td>
<td>IEEE 802.11b CCK/DSSS</td>
<td>IEEE 802.11a/g OFDM</td>
<td>IEEE 802.11n OFDM/MIMO</td>
</tr>
<tr>
<td>2000s</td>
<td>IEEE 802.15.1 Bluetooth/FHSS</td>
<td>IEEE 802.15.3 UWB/OFDM/DSSS</td>
<td>IEEE 802.15.4 Zigbee/DSSS</td>
<td>60 GHz Gigabit UWB</td>
</tr>
<tr>
<td></td>
<td>IEEE 802.15.4 Zigbee/DSSS</td>
<td>IEEE 802.15.6 BAN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
History of Wireless Data

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>Diffused Infrared (IBM Labs in Switzerland)</td>
</tr>
<tr>
<td>1980</td>
<td>Spread Spectrum using SAW Devices (HP Labs in California)</td>
</tr>
<tr>
<td>Early 80s</td>
<td>Wireless modems (Data Radio)</td>
</tr>
<tr>
<td>1983</td>
<td>ARDIS (Motorola/IBM)</td>
</tr>
<tr>
<td>1985</td>
<td>ISM Bands for Spread Spectrum Applications</td>
</tr>
<tr>
<td>1986</td>
<td>Mobitex (Swedish Telecom and Ericsson)</td>
</tr>
<tr>
<td>1990</td>
<td>IEEE 802.11 starts, Announcement of WLAN products</td>
</tr>
<tr>
<td>1991</td>
<td>RAM Mobile (Mobitex)</td>
</tr>
<tr>
<td>1992</td>
<td>Formation of Winforum, ETSI’s HIPERLAN in Europe</td>
</tr>
<tr>
<td>1993</td>
<td>Release of 2.4, 5.2 and 17.1-17.3 GHz bands in EU</td>
</tr>
<tr>
<td>1993</td>
<td>PCS licensed and unlicensed bands</td>
</tr>
<tr>
<td>1993</td>
<td>CDPD - (IBM and 9 operating companies)</td>
</tr>
<tr>
<td>1997</td>
<td>IEEE 802.11 finalized</td>
</tr>
<tr>
<td>2000</td>
<td>General packet radio service (GPRS)</td>
</tr>
<tr>
<td>2002</td>
<td>Wireless PANs and EDGE, CDMA Data</td>
</tr>
<tr>
<td>2007</td>
<td>HSDPA and 3G Data services</td>
</tr>
<tr>
<td>2012</td>
<td>Wimax and LTE</td>
</tr>
</tbody>
</table>
Generic Architecture - WWANs

Visitor Database (ViD)
Home Database (HoD)
Authentication Center (AuC)
Operation & Maintenance Center (OMC)
Equipment Register (ER)

Mobile Switching Center (MSC)
Radio Network Controller (RNC)
Point of Access
Mobile Station

The Internet or PSTN
2G Cellular Network Architecture

BTS - Base Transceiver Subsystem
BSC - Base Station Controller
MSC - Mobile Switching Center
CO - Central Office
VLR - Visitor Location Register
SS 7 - Signaling System 7
Terms and terminology

- **Mobile Station (MS)**

- **Point of Access**

 - Base Station (BS), Base Transceiver Subsystem (BTS), Mobile Data Base Station (MDBS), Access Point (AP), Node B, E-Node B

- **Radio Controller**

 - Base Station Controller – BSC, Radio Network Controller – RNC

- **Mobile Control Center**

- **Visiting Database**

- **Home Database**

 - Home Location Register – HLR, Mobile Home Function – MHF, GPRS Register – GR, Home Agent - HA

Not all elements from the generic architecture exist in all technologies & the exact functionality of the elements may be different.
Functionality (I)

- **Point of access**
 - The physical radio transceiver
 - Creates the air interface
 - Transmits signals to MSs
 - Receives signals from MSs
 - Involved in multiplexing on the link – medium access

- **Radio Network Controller**
 - Again link level
 - Manages the air interface
 - Which RF carrier should I tune to?
 - What transmit power level should I use?
 - Is the carrier I want to use capable of providing acceptable quality?
 - When should I make a handoff?
Base Stations (BS)

- Provides radio channels between mobile units and network
- Pico-cells: (indoor – 0-.5 Km) support 8-20 channels
- Micro-cells: (outdoor – 0-1 Km), Macro-cells: (1-30 Km)
Base Stations and Radio Network Controllers

- **Base Transceiver Subsystem (BTS)**
 - Houses radio units

- **Base Station Controller (BSC)**
 - Manages a cluster of BS, channel assignment, handoff, power control, some switching, etc
Functionality (II)

- **Mobile Switching Center**
 - Manages mobility of devices
 - Routes packets to and from MSs
 - Keeps track of the location of the MSs
 - Location means “in which cell or group of cells” the MS may be located i.e., which points of access may be probable candidates for pinging the MS
 - How does it do this? Using the home database and visiting database
 - Ensures security
 - Uses the authentication center and equipment registers to authenticate the MS and to prevent fraudulent/stolen devices from using the network
- **Accounting and Billing**
 - Operations and maintenance center
Mobile Switching Center (MSC) (MTSO)

- Provides switching functions, coordinates location tracking, call delivery, handoff, interfaces to HLR, VLR, AUC, etc.
- Size of central office switch
Home and Visitor Databases

- **Home Location Register (HLR)**
 - Specialized database server contains billing info, service profile and general location of a mobile user

- **Visitor Location Register (VLR)**
 - Similar to HLR contains location of users and their service profile of all users in a metro type area
Wireless Local Area Networks

- Used primarily in smaller areas
 - Homes, campuses, coffee shops, businesses
 - Support communication to mobile data users via wireless channel

- Standards
 - IEEE 802.11 a, b, g, n standard (wireless Ethernet)
 - 1Mbps, 2Mbps, 11Mbps, 54 Mbps, >100 Mbps rates
 - Use Barker codes, CCK, OFDM, MIMO
 - Infrastructure based and Ad-Hoc based networks
 - HIPERLAN 1 and 2

- Typically use unlicensed spectrum
Generic Architecture - WLANs

- AP-1
- AP-2
- AP-3
- MS-1
- MS-2
- MS-3
- Authentication Server
- LAN segment (distribution system)
- The Internet
- Router
- Basic Service Set (BSS)
- Extended Service Set (ESS)
Ad hoc network topology

- Distributed topology
 - Devices communicate between each other directly (like walkie-talkies)

- Characteristics
 - Reconfigurable networks
 - No need for a wired infrastructure
 - Suitable for rapid deployment

- Need to “discover” communicating parties, services, methods of routing data, and so on
Ad Hoc WLANs

- **MSs communicate in a peer-to-peer manner**
 - Single-hop: They have to be in range of one another
 - Most vendors support only this option
 - Multi-hop: MSs can act as “relay nodes”
 - HIPERLAN/1 supports this, but there are no real products

Independent Basic Service Set (IBSS) in 802.11 WLANs
Ad-hoc topology

Bluetooth: A “cell” or “piconet” is defined by a Master device
- The master controls the frequency hopping sequence
- The master also controls the transmission within its piconet

Others
- Sensor networks, RF-IDs, mobile ad hoc networks
PHY Layer Issues

- The radio channel is harsh
 - Cables and wires have “predictable” and time-invariant transmission characteristics
 - The radio channel is dynamic and harsh
 - Examples of problems
 - Fading
 - Multipath dispersion
 - Signal attenuation due to rain or snow
 - Interference (again!)

- Physical layer issues
 - Coverage
 - Harshness of the radio channel
 - High error rates need mitigation
 - Effect on protocols

- Spectrum Regulation
 - The medium of transmission is air
 - The medium cannot be duplicated and it must be shared by ALL applications
 - Communications, broadcast, emergency services, television, military, etc.
 - Sharing is achieved by allocating separate “bands” of spectrum to users of different applications
 - Broadcast radio: 520-1605.5 kHz – AM Radio
 - Broadcast radio: 87.5 – 108 MHz – FM Radio
 - A band of spectrum refers to a range of electromagnetic frequencies
 - The FCC regulates the spectrum allocated to vendors
MAC layer Issues + Network Design & Deployment

- There is LIMITED spectrum for different applications
- The frequency bands are not “contained” as in the case of wired transmissions
 - There is some interference between signals transmitted in one frequency band and another
 - Same thing is true if you choose to split the band for an application (think AM)
- Capacity is limited and we need novel methods to improve capacity

SUMMARY
- Spectrum and hence bandwidth is limited
- Radio transmissions can cause interference

- MAC layer issues
 - Shared “broadcast” medium
 - Need for a simple decentralized medium access mechanism
 - Performance
 - Throughput, delay and QoS
- Network design and deployment
 - No single type of wireless access is available everywhere
 - Spectrum is scarce
 - Coexistence, interference, planning
 - Frequency reuse and cellular topology
Multiple Access Techniques

- **Orthogonal waveforms**
 - Frequency division multiple access (FDMA)
 - Separate users in frequency
 - Analog 1G systems – AMPS, NMT, TACS etc.
 - Time division multiple access (TDMA)
 - Separate users in time
 - Digital 2G systems – IS-136 and GSM

- **Random (pseudo) and orthogonal waveforms**
 - Code division multiple access (CDMA)
 - Separate users in “code”
 - Digital 2G system – IS-95
 - All 3G systems – IMT-2000 (W-CDMA and cdma2000)

- **Long term evolution (LTE) uses OFDMA**
Radio Resource Management

- Resource limitations
 - Radio resources
 - Power:
 - A mobile device does not have a constant power supply and relies on battery
 - Transmissions consume energy!
 - The battery must last as long as possible before being charged
 - The transmission scheme MUST be efficient in terms of energy consumption

- Radio resource and power management
 - Assignment of radio channels and transmit power
 - Admission control, power control and handoff decision
Mobility Management

- Wireless devices are popular because they do not need to be tethered to a place like wired devices
- Wireless devices are continuously changing locations
 - The connectivity changes
 - Devices may move out of coverage of a service
 - Someone should keep track of where the device is to deliver information to it
 - Someone should make sure that the connection is not broken as a wireless device moves

- In wired communications the “address” of the device identifies its location – this is no longer true with wireless devices
- A moving device will “see” a harsher channel!

- Mobility management
 - Location management
 - Tracking where a MS is
 - Handoff management
 - Routing calls/packets as a MS moves
 - Routing in ad hoc networks
 - Database issues
Operations and Security

- Management and Security
 - Mobile end host is no longer confined to the home network
 - Wireless links can be easily “tapped”
 - Fraud
 - Accounting and billing
 - Conflicts with other issues

- Network operations and management
 - Accounting and billing to charge subscribers correctly
 - Access to resources and services on the network

- Service discovery and data management
 - Sensors and RF-IDs
 - How is data maintained?
 - Where should data reside?
 - How can it be efficiently accessed?
Mobile Device

- Form factor and capabilities
 - A mobile device has to be light weight, durable, have long battery life and yet be capable of performing complex tasks
 - Energy efficient design of software and protocols

- Usability
 - User characteristics (size, dexterity, knowledge, etc.)
 - Environment characteristics (temperature, degree of mobility, etc.)
 - Device Characteristics
 - Start up time
 - Data integrity and security
 - cpu speed and memory size
 - Power supply
 - User interface (keypad, stylus, voice)
Spectrum is scarce

- We need to squeeze as many data bits as possible in a given bandwidth
- The more data bits you squeeze in the more stringent are the system requirements
 - Example: Squeezing in more data => larger signal to noise ratio requirement => larger transmit power => lower battery life
 - Example: multipath dispersion is not a problem at low data rates
 - Example: complex processing can result in large form factor
Summary - II

- Physical layer makes wireless communications unreliable and erroneous
 - Contributes greatly to the complexity of the system
 - Impacts all other aspects of a wireless system
- Fundamentally different from wired networks
 - Resource issues
 - Mobility issues
 - Design issues